FOOD MATERIALS FUNCTIONALITY

John R. Dutcher

Polymer Surface & Interface Group

University of Guelph
Guelph, Ontario N1G 2W1
• complexity of foods
 – foods as soft materials
 – need for multidisciplinary approach

• Advanced Foods & Materials Network (AFMnet)
 – sophisticated techniques
 – diverse expertise
 – projects involving nanoscience

• opportunities & challenges for nanoscience in food research

• summary & conclusions
FOODS ARE COMPLEX

• complexity and diversity of processed foods
FOODS ARE COMPLEX

• complexity and diversity of processed foods

• can think of these foods as gels, emulsions & foams

• apply concepts of materials science
SOFT MATERIALS

- soft materials are characterized by several universal features
 - weak bonding
 - large response to external stimulus

 self-assembly

- properties vary over large range of length scales
- properties vary over large range of time scales
• concepts of soft material science shed light on
 – interparticle interactions, particle & foam stability, phase separation, gelation & glass formation
• used to understand behavior of complex systems
 – small polymers added to stable colloidal suspension
 – depletion zone around each colloidal particle
 – when depletion zones overlap, excluded volume for polymers is reduced → net attraction for colloids

Tuinier et al. (2003)
• foods are mixtures of many different components
 – fats, carbohydrates, proteins, water

• food components not usually found in natural environment
 – far from equilibrium
 – will relax & self-assemble when perturbed
 – different relaxation rates at different length scales

• mechanical action can also change properties

• presence of water near interfaces is common
 – water is structured on nanoscale
 – hydrogen bonding, clustering

 need multidisciplinary approach
• AFMnet is a Canadian Network of Centres of Excellence
 – covers natural sciences & engineering, medical sciences & social sciences
 – in Structure-Dynamics-Function theme
 – expertise in food science, physics, chemistry, molecular biology, microbiology, mathematics, chemical engineering, biochemistry, plant science, nutrition
 – 9 projects involving 55 investigators at 22 institutions
 – combine state-of-the-art experiments with theory & computer simulations
 ➡️ unique training of students

www.afmnet.ca
• emphasis on
 – food security
 – biofilms, cationic antimicrobial peptides
 – biosensing
 – protein sensors on nanostructured surfaces
 – controlled release delivery systems
 – incorporate bio-material & food-grade components
 – delivery of active components
 – probiotics, antimicrobials
 – value-added products
• take advantage of huge influx of research infrastructure awarded by Canada Foundation for Innovation

• sophisticated experimental techniques
 – surface & bulk
 – imaging
 – spectroscopic
 – genetic manipulation

• state-of-the-art computational techniques
 – shared computational networks

• capitalize on access to international large scale facilities
 – neutron scattering (Chalk River, NIST, SNS, ILL)
 – synchrotron facilities (CLS, APS, ALS, Brookhaven)
• correlative microscopy & scattering measurements of bacteria, biofilms & their components
 – TEM, AFM, confocal, STXM
 – neutron scattering
• bacteria consist of an amazing array of specialized biomaterials
 • isolate and purify components
 – exploit unique properties in variety of applications

membrane vesicles

nanowires

PNAS 2006

peptidoglycan sacculi

nanominerals

J Bacteriol 2006

Appl Environ Microbiol 2001
• three strategies to investigate sequence requirements in CAPs [Hancock/Beveridge]
 – substitution, sequence scrambling, random libraries

• protamine through porins in hydrophobic membranes [Pink/Hanna/Gill]
• tethered lipid membranes with applied electric field

• nanostructured surfaces
 – block copolymers
 – biosensors

Lipkowski/Dutcher

Prudhomme/Bazuin
CONTROLLED-RELEASE SYSTEMS

- develop platforms for controlled release of bioactive compounds
 - biopolymer-based hydrogels
 - gelatin-maltodextrin mixtures cross-linked by genipin
 - prebiotics/probiotics
 - production, characterization & encapsulation of plant-derived oligosaccharides & probiotic bacteria

 two-stage phase separation
 - two emulsions

Paulson/Rousseau
• oil-water-protein emulsions
 – protein conformations at oil-water interfaces
 – light scattering, atomic force microscopy

ΔX = 11 nm

Touhami et al.
• distinguish between
 – nanoscience: properties at nanoscale
 – nanotechnology: products based on nanoscale properties

• use nanoscience tools & concepts to determine relationship between structure, dynamics & function
 – novel experiments
 – ambitious computer simulations

• identify promising nanostructures & nanoscale properties
 – exploit self-assembly to create novel microstructures & macroscopic properties

• identify & develop promising nanotechnologies & products
• complexity of food materials
 – apply concepts of soft materials science
 – use multidisciplinary approach

• nanoscience research in AFMnet
 – use of experiments & computer simulations
 – basic & applied studies related to food security, biosensing, delivery systems & value-added